Cardiolipin mediates membrane and channel interactions of the mitochondrial TIM23 protein import complex receptor Tim50
نویسندگان
چکیده
The phospholipid cardiolipin mediates the functional interactions of proteins that reside within energy-conserving biological membranes. However, the molecular basis by which this lipid performs this essential cellular role is not well understood. We address this role of cardiolipin using the multisubunit mitochondrial TIM23 protein transport complex as a model system. The early stages of protein import by this complex require specific interactions between the polypeptide substrate receptor, Tim50, and the membrane-bound channel-forming subunit, Tim23. Using analyses performed in vivo, in isolated mitochondria, and in reductionist nanoscale model membrane systems, we show that the soluble receptor domain of Tim50 interacts with membranes and with specific sites on the Tim23 channel in a manner that is directly modulated by cardiolipin. To obtain structural insights into the nature of these interactions, we obtained the first small-angle x-ray scattering-based structure of the soluble Tim50 receptor in its entirety. Using these structural insights, molecular dynamics simulations combined with a range of biophysical measurements confirmed the role of cardiolipin in driving the association of the Tim50 receptor with lipid bilayers with concomitant structural changes, highlighting the role of key structural elements in mediating this interaction. Together, these results show that cardiolipin is required to mediate specific receptor-channel associations in the TIM23 complex. Our results support a new working model for the dynamic structural changes that occur within the complex during transport. More broadly, this work strongly advances our understanding of how cardiolipin mediates interactions among membrane-associated proteins.
منابع مشابه
Tim23–Tim50 pair coordinates functions of translocators and motor proteins in mitochondrial protein import
Mitochondrial protein traffic requires coordinated operation of protein translocator complexes in the mitochondrial membrane. The TIM23 complex translocates and inserts proteins into the mitochondrial inner membrane. Here we analyze the intermembrane space (IMS) domains of Tim23 and Tim50, which are essential subunits of the TIM23 complex, in these functions. We find that interactions of Tim23 ...
متن کاملTim50’s presequence receptor domain is essential for signal driven transport across the TIM23 complex
N-terminal targeting signals (presequences) direct proteins across the TOM complex in the outer mitochondrial membrane and the TIM23 complex in the inner mitochondrial membrane. Presequences provide directionality to the transport process and regulate the transport machineries during translocation. However, surprisingly little is known about how presequence receptors interact with the signals a...
متن کاملTim50 Is a Subunit of the TIM23 Complex that Links Protein Translocation across the Outer and Inner Mitochondrial Membranes
Based on the results of site-specific photocrosslinking of translocation intermediates, we have identified Tim50, a component of the yeast TIM23 import machinery, which mediates translocation of presequence-containing proteins across the mitochondrial inner membrane. Tim50 is anchored to the inner mitochondrial membrane, exposing the C-terminal domain to the intermembrane space. Tim50 interacts...
متن کاملUps1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria
Cardiolipin, a unique phospholipid composed of four fatty acid chains, is located mainly in the mitochondrial inner membrane (IM). Cardiolipin is required for the integrity of several protein complexes in the IM, including the TIM23 translocase, a dynamic complex which mediates protein import into the mitochondria through interactions with the import motor presequence translocase-associated mot...
متن کاملThe Mitochondrial Presequence Translocase An Essential Role of Tim50 in Directing Preproteins to the Import Channel
Mitochondrial proteins with N-terminal targeting signals are transported across the inner membrane via the presequence translocase, which consists of membrane-integrated channel proteins and the matrix Hsp70 import motor. It has not been known how preproteins are directed to the import channel. We have identified the essential protein Tim50, which exposes its major domain to the intermembrane s...
متن کامل